Abstract

We study two intense Forbush decreases that occurred during two adjacent SOLTIP (Solar connection of Transient Interplanetary Processes) intervals; namely SOLTIP 1 (22–27 March 1991) and SOLTIP 2 (1–17 June 1991); galactic cosmic ray intensity at the depth of the second Forbush decrease was the lowest ever recorded since continuous monitoring by Climax neutron monitor began in 1951 (58% below the solar minimum value of 1954), indicating extreme conditions in the heliosphere that prevented galactic cosmic rays from reaching the Earth. These decreases were seen propagating in outer heliosphere by the deep space missions Voyagers 1, 2 and Pioneer 10, 11, with suitable time delays. We analyze hourly, pressure corrected, neutron monitor data from the global sites in both hemispheres, and muon telescopes located underground; they respond to 10–300 GV range of the galactic cosmic ray spectrum. This circumstance provides us an ideal opportunity to study the rigidity dependence of the amplitudes of the two Forbush decreases. In both cases the amplitude is found to be a power law in rigidity, with negative exponents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.