Abstract
When residual belief-propagation (RBP), which is a kind of informed dynamic scheduling (IDS), is applied to low-density parity-check (LDPC) codes, the convergence speed in error-rate performance can be significantly improved. However, the RBP decoders presented in previous literature suffer from poor convergence error-rate performance due to the two phenomena explored in this paper. The first is the greedy-group phenomenon, which results in a small part of the decoding graph occupying most of the decoding resources. By limiting the number of updates for each edge message in the decoding graph, the proposed Quota-based RBP (Q-RBP) schedule can reduce the probability of greedy groups forming. The other phenomenon is the silent-variable-nodes issue, which is a condition where some variable nodes have no chance of contributing their intrinsic messages to the decoding process. As a result, we propose the Silent-Variable-Node-Free RBP (SVNF-RBP) schedule, which can force all variable nodes to contribute their intrinsic messages to the decoding process equally. Both the Q-RBP and the SVNF-RBP provide appealing convergence speed and convergence error-rate performance compared to previous IDS decoders for both dedicated and punctured LDPC codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.