Abstract
Searchable Symmetric Encryption (SSE) supports efficient yet secure query processing over outsourced symmetrically encrypted databases without the need for decryption. A longstanding open question has been the following: can we design a fast, scalable, linear storage and low-leakage SSE scheme that efficiently supports arbitrary Boolean queries over encrypted databases? In this paper, we present the design, analysis and prototype implementation of the first SSE scheme that efficiently supports conjunctive, disjunctive and more general Boolean queries (in both the conjunctive and disjunctive normal forms) while scaling smoothly to extremely large encrypted databases, and while incurring linear storage overheads and supporting extremely fast query processing in practice. We quantify the leakage of our proposal via a rigorous cryptographic analysis and argue that it achieves security against a well-known class of leakage-abuse and volume analysis attacks. Finally, we demonstrate the storage-efficiency and scalability of our proposed scheme by presenting experimental results of a prototype implementation of our scheme over large real-world databases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.