Abstract
Lignin, one of the most abundant natural polymers, has been successfully used as an effective lubricant additive with high value. The chemical structure of lignin is very diverse and strongly affected by both the source of lignin (i.e. plant species) and the lignin extraction process. In this work, a series of lignin from different biomass sources (hard or soft wood) and extraction process (organosolv with or without acid catalyst) has been successfully incorporated into poly(ethylene glycol) (PEG) and fortified lubricating properties were achieved. The effects of different lignin on the rheological, thermal and tribological properties of the lignin/EG lubricants were systematically investigated by different characterization techniques. Lignin in PEG significantly improves the lubricating property, where a wear reduction of 93.8% was observed. The thermal and lubrication properties of the PEG lubricants filled with different kinds of lignin are tightly related to the synergistic state of hydrogen bonding and molecular weight distribution. Lignin with broader molecular weight distribution and higher hydroxyl content shows better adhesion on metal surfaces and strengthened lubricating film, which could be used as the efficient lubricating additives. This work provides a criterion for selecting appropriate lignin as the efficient lubricant additive and accelerates the application of lignin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.