Abstract

The study of the folding of single domains, in the context of their multidomain environment, is important because more than 70% of eukaryotic proteins are composed of multiple domains. The structures of the tandem immunoglobulin (Ig) domain pairs A164–A165 and A168–A169, from the A-band of the giant muscle protein titin, reveal that they form tightly associated domain arrangements, connected by a continuous β-strand. We investigate the thermodynamic and kinetic properties of these tandem domain pairs. While A164–A165 apparently behaves as a single cooperative unit at equilibrium, unfolding without the accumulation of a large population of intermediates, domains in A168–A169 behave independently. Although A169 appears to be stabilized in the tandem protein, we show that this is due to nonspecific stabilization by extension. We elucidate the folding and unfolding pathways of both tandem pairs and show that cooperativity in A164–A165 is a manifestation of the relative refolding and unfolding rate constants of each individual domain. We infer that the differences between the two tandem pairs result from a different pattern of interactions at the domain/domain interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.