Abstract

Signal transduction by two-component regulatory systems involves phosphorylation of the receiver domain of a response regulator by the transmitter domain of the cognate histidine kinase. In the NtrBC system, phosphorylation of NtrC by NtrB results in transcriptional activation of nitrogen-regulated genes. We have used the yeast two-hybrid system to probe interactions between domains of the NtrB and NtrC proteins from Klebsiella pneumoniae. We constructed fusions from each of a series of proteins or protein domains to the activation and the DNA-binding domains of GAL4 and analysed expression of GAL1:lacZ and GAL1:HIS3 reporters in yeast. The DNA-binding domain of NtrC and the so-called sensor domain of NtrB appeared to provide the major determinants for dimerization of the fusion proteins. A strong and specific interaction was also shown between NtrB and NtrC, localized to the HN region of the NtrB transmitter module and to the NtrC receiver domain, whereas other domains of these proteins do not appear to contribute to the recognition specificity. The results presented here indicate that communication between two-component partners also involves protein-protein interactions that can be detected in vivo, suggesting that the yeast two-hybrid system is a powerful genetic tool for identifying functional partners of prokaryotic signal transduction pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.