Abstract

Nucleosomes represent a challenge in regard to transcription. Histone eviction enables RNA polymerase II (RNAPII) progression through DNA, but compromises chromatin integrity. Here, we used the SNAP-tag system to distinguish new and old histones and monitor chromatin reassembly coupled to transcription in human cells. We uncovered a transcription-dependent loss of old histone variants H3.1 and H3.3. At transcriptionally active domains, H3.3 enrichment reflected both old H3.3 retention and new deposition. Mechanistically, we found that the histone regulator A (HIRA) chaperone is critical to processing both new and old H3.3 via different pathways. De novo H3.3 deposition is totally dependent on HIRA trimerization as well as on its partner ubinuclein 1 (UBN1), while antisilencing function 1 (ASF1) interaction with HIRA can be bypassed. By contrast, recycling of H3.3 requires HIRA but proceeds independently of UBN1 or HIRA trimerization and shows absolute dependency on ASF1-HIRA interaction. We propose a model whereby HIRA coordinates these distinct pathways during transcription to fine-tune chromatin states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call