Abstract

A system of two heavy fermions, leptons or quarks of the fourth generation, which are bound together via the Higgs boson exchange is studied. The conventional Yukawa-type interaction produced by this exchange is accompanied by several important corrections. We derived the Hamiltonian, which describes the correction arising from the retardation (compare the Breit correction in QED); we also calculated the relativistic and radiative corrections. The Higgs-induced bound state appears for the fermion mass m>m_{cr} \approx 500 GeV. When the long-range Coulomb interaction or the gluon exchange are included, the bound states exist for any mass, but the Higgs exchange drastically increases the binding energy of these states when m is approaching m_{cr}. In the region m>m_{cr} the gluon exchange gives a sizable correction to the Higgs induced binding energy. This correction greatly exceeds typical binding energies in the states produced via the gluon exchange only. The possibility of detection of the considered bound states at LHC is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.