Abstract
Forensic facial image comparison based on recognition algorithms has been widely applied in forensic science. Previous researches have been concentrating on the cases of using single system during comparison, while how to use multiple systems has not yet been studied. In this paper, a dual-systems model (including SeetaFace and FaceNet) for facial comparison was constructed, and Bayesian networks were utilized as the basic frame. In order to prove its superiority, a large-scale experiment (on the dataset CelebA) has been carried on to evaluate the score-based likelihood ratio. We used three likelihood ratio evaluation tools (Empirical Cross-Entropy, Cost Likelihood Ratio, Limit Tippett Plots) to assess the performance of the model. The Wasserstein distance was also used to evaluate the detailed likelihood ratio performance. The experimental results show that the likelihood ratio performance of our dual-systems model is better than single system. Besides, our method of model building and evaluation can also be used in the condition of triple or more systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.