Abstract
The primary action of a family of mitogens including bombesin, bradykinin, vasopressin and alpha-thrombin is to activate the hydrolysis of polyphosphoinositides. Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by phospholipase C is mediated through coupling of surface receptors to a GTP-binding protein (Gp protein) which, in some cells, is inactivated by the toxin of Bordetella pertussis. It is not known whether this signalling pathway is involved in initiating DNA replication, whereas it has been firmly established that reinitiation of DNA synthesis can be triggered without activation of PtdIns(4,5)P2 hydrolysis by, for example, EGF (epidermal growth factor), FGF (fibroblast growth factor) and insulin/IGF-I (insulin-like growth factor-I), members of a class of mitogens known to activate receptor tyrosine kinases. Taking advantage of the fact that Chinese hamster lung fibroblasts respond to either class of mitogens and that their Gp protein appears to be sensitive to pertussis toxin, we have now analysed the toxin's effect on reinitiation of DNA synthesis and find that it inhibits up to 95% of thrombin-induced mitogenicity without affecting EGF- or FGF-induced DNA synthesis and proliferation. These findings strongly suggest that activation of PtdIns(4,5)P2-phospholipase C has a determinant function in growth control, and confirm the existence of alternative growth factor-signalling pathways independent of polyphosphoinositide breakdown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.