Abstract

A two-grid discretization for the stabilized finite element method for mixed Stokes-Darcy problem is proposed and analyzed. The lowest equal-order velocity-pressure pairs are used due to their simplicity and attractive computational properties, such as much simpler data structures and less computer memory for meshes and algebraic system, easier interpolations, and convenient usages of many existing preconditioners and fast solvers in simulations, which make these pairs a much popular choice in engineering practice; see e.g., [4,27]. The decoupling methods are adopted for solving coupled systems based on the significant features that decoupling methods can allow us to solve the submodel problems independently by using most appropriate numerical techniques and preconditioners, and also to reduce substantial coding tasks. The main idea in this paper is that, on the coarse grid, we solve a stabilized finite element scheme for coupled Stokes-Darcy problem; then on the fine grid, we apply the coarse grid approximation to the interface conditions, and solve two independent subproblems: one is the stabilized finite element method for Stokes subproblem, and another one is the Darcy subproblem. Optimal error estimates are derived, and several numerical experiments are carried out to demonstrate the accuracy and efficiency of the two-grid stabilized finite element algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call