Abstract
AbstractIn this paper, we study an efficient scheme for nonlinear reaction-diffusion equations discretized by mixed finite element methods. We mainly concern the case when pressure coefficients and source terms are nonlinear. To linearize the nonlinear mixed equations, we use the two-grid algorithm. We first solve the nonlinear equations on the coarse grid, then, on the fine mesh, we solve a linearized problem using Newton iteration once. It is shown that the algorithm can achieve asymptotically optimal approximation as long as the mesh sizes satisfyH=O(h1/2). As a result, solving such a large class of nonlinear equations will not be much more difficult than getting solutions of one linearized system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.