Abstract
Photoreceptors, especially the far-red light-absorbing phytochrome A, play a crucial role in early seedling development, triggering the transition from etiolated to photomorphogenic growth. Here, we describe the biological functions of two GRAS proteins from Arabidopsis (Arabidopsis thaliana), SCARECROW-LIKE21 (SCL21) and PHYTOCHROME A SIGNAL TRANSDUCTION1 (PAT1), which are specifically involved in phytochrome A signal transduction. Loss-of-function mutants show an elongated hypocotyl under far-red light and are impaired in other far-red high-irradiance responses. The SCL21 transcript itself is down-regulated by far-red light in a phytochrome A- and PAT1-dependent manner. Our results demonstrate that both SCL21 and PAT1 are positive regulators of phytochrome A signal transduction for several high-irradiance responses. Genetic and biochemical evidence suggest a direct interaction of the two proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.