Abstract
delta-Aminolevulinic acid (ALA) is the first committed precursor for tetrapyrrole biosynthesis. ALA formation in Escherichia coli occurs in a tRNA-dependent three-step conversion from glutamate. Glu-tRNA reductase is the key enzyme in this pathway. E. coli K12 contains two Glu-tRNA reductase activities which differ in their molecular weights. Here we describe the purification of one of these enzymes. Four different chromatographic separations yielded a nearly homogeneous protein. Its apparent molecular mass under denaturing (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and nondenaturing conditions (rate zonal sedimentation and gel filtration) is 85,000 +/- 5,000 Da. This indicates a monomeric structure for the active enzyme. Gel filtration and glycerol gradient centrifugation indicate that the other activity has a molecular mass of 45,000 +/- 5,000 Da. In the presence of NADPH both enzyme activities converted E. coli Glu-tRNA(2Glu) to glutamate 1-semialdehyde. Addition of GTP or hemin did not affect the reductase activity. Both enzymes display sequence-specific recognition of tRNA; E. coli Glu-tRNA(2Glu) is a good substrate while the Chlamydomonas reinhardtii, Bacillus subtilis, and Synechocystis Glu-tRNA(Glu) species are poorly recognized.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.