Abstract
Soft magnetic materials (SMMs) are indispensable for electromechanical energy conversion in high-efficiency applications, but they are exposed to increasing mechanical loading conditions in electric motors due to higher rotational speeds. Enhancing the yield strength of SMMs is essential to prevent the degradation in magnetic performance and failure from plastic deformation, yet most SMMs have yield strengths far below one gigapascal. Here, we present a multicomponent nanostructuring strategy that doubles the yield strength of SMMs while maintaining ductility. We introduce morphologically anisotropic nanoprecipitates through dislocation-driven precipitation induced by preceding deformation during heat treatment in an iron–nickel–cobalt–tantalum material. With all dimensions of the precipitates below the magnetic domain wall width, we achieve a high precipitate number density with a large specific surface area, small interprecipitate spacing, and high lattice mismatch, which impede dislocation glide and strengthen the material. Both the matrix and precipitates are ferromagnetic, yielding a high magnetic moment. This nanostructuring approach offers a pathway to two-gigapascal-strong ductile SMMs with moderately increased coercivity that can be tolerated in exchange for significantly improved mechanical performance for sustainable electrification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.