Abstract

Detailed studies of single species population dynamics are important for understanding population behaviour and the analysis of large complex ecosystems. Here we present two general models for simulating insect population dynamics: The distributed delay processes and Poisson Process models. In the distributed delay processes model, the simulated population has the characteristic property that the time required for maturation from one stage of growth (instar) to another is directly related to ambient temperature. In this model the parameters DEL and K are significant to the simulated process. The discrete Poisson model deals with the individual development of a group of free entities with random forward movement. These two general component models can be used to simulate the population growth of many insects currently the subject of research interest. The application of distributed delay processes to dynamics of cotton bollworm <em>helicoverpa armigera</em> is presented. The results show the simulation data quite "fit" the observed data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.