Abstract

We consider initial/boundary value problems for the subdiffusion and diffusion-wave equations involving a Caputo fractional derivative in time. We develop two fully discrete schemes based on the piecewise linear Galerkin finite element method in space and convolution quadrature in time with the generating function given by the backward Euler method/second-order backward difference method, and establish error estimates optimal with respect to the regularity of problem data. These two schemes are first- and second-order accurate in time for both smooth and nonsmooth data. Extensive numerical experiments for two-dimensional problems confirm the convergence analysis and robustness of the schemes with respect to data regularity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call