Abstract

Sonoluminescing single bubbles driven simultaneously by two harmonic frequencies were recently reported to increase the maximum light output up to a factor of 3 with respect to single mode excitation. In this paper, experimental and numerical results on single-bubble sonoluminescence (SBSL) in an air/water system using the fundamental mode of 25 kHz and the second harmonic at 50 kHz are presented. The region of light emission is mapped in the three-dimensional parameter space spanned by the two driving pressure amplitudes and their relative phase. Good agreement was seen between measured light output, maximum bubble radius, and stability boundaries and the numerical model which is based on spherical bubble oscillations regarding diffusive and shape stability. The maximum brightness was enhanced by a factor up to 2.5 with respect to single mode SBSL. However, long-term measurements reveal great variation of the emission at fundamental mode driven SBSL and of the boost factor reached with two frequencies. The overall brightness maxima of both excitation methods within a period of several hours turn out to show little difference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.