Abstract

Advanced glycation end products (AGEs) and oxidation products (OPs) play an important role in diabetes complications, aging, and damage from sun exposure. Measurement of skin autofluorescence (SAF) has been promoted as a noninvasive technique to measure skin AGEs, but the actual products quantified are uncertain. We have compared specific SAF measurements with analytically determined AGEs and oxidative biomarkers in skin collagen and determined if these measurements can be correlated with chronological aging and actinic exposure. SAF at four excitation (ex)/emission (em) intensities was measured on the upper inner arm ("sun protected") and dorsal forearm ("sun exposed") in 40 subjects without diabetes 20-60 years old. Skin collagen from the same sites was analyzed by liquid chromatography-tandem mass spectrometry for three AGEs-pentosidine, carboxymethyllysine (CML), and carboxyethyllysine (CEL)-and the OP methionine sulfoxide (MetSO). There was poor correlation of AGE-associated fluorescence spectra with AGEs and OP in collagen, with only pentosidine correlating with fluorescence at 370(ex)/440(em) nm. A little-studied SAF (440(ex)/520(em) nm), possibly reflecting elastin cross-links, correlated with all AGEs and OPs. Levels of CML, pentosidine, and MetSO, but not SAF, were significantly higher in sun-exposed skin. These AGEs and OPs, as well as SAF at 370(ex)/440(em) nm and 440(ex)/520(em) nm, increased with chronological aging. SAF measurements at 370(ex)/440(em) nm and 335(ex)/385(em) nm, except for pentosidine, which correlated with fluorescence at 370(ex)/440(em), correlate poorly with glycated and oxidatively modified protein in human skin and do not reflect actinic modification. A new fluorescence measurement (440(ex)/520(em) nm) appears to reflect AGEs and OPs in skin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.