Abstract

In this work, we implement a new London equation module for superconductivity in the GPU-enabled ARTEMIS framework, and couple it to a finite-difference time-domain solver for Maxwell's equations. We apply this two-fluid approach to model a superconducting coplanar waveguide (CPW) resonator. We validate our implementation by verifying that the theoretical skin depth and reflection coefficients can be obtained for several superconductive materials, with different London penetration depths, over a range of frequencies. Our convergence studies show that the algorithm is second-order accurate in both space and time, except at superconducting interfaces where the approach is spatially first-order. In our CPW simulations, we leverage the GPU scalability of our code to compare the two-fluid model to more traditional approaches that approximate superconducting behavior and demonstrate that superconducting physics can show comparable performance to the assumption of quasi-infinite conductivity as measured by the Q-factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call