Abstract

The steady flow of blood through a catheterized artery is analyzed, assuming the blood as a two-fluid model with the core region of suspension of all the erythrocytes as a Herschel-Bulkley fluid and the peripheral region of plasma as a Newtonian fluid. The expressions for velocity, flow rate, wall shear stress and frictional resistance are obtained. The variations of these flow quantities with yield stress, catheter radius ratio and peripheral layer thickness are discussed. It is observed that the velocity and flow rate decrease while the wall shear stress and resistance to flow increase when the yield stress or the catheter radius ratio increases when all the other parameters held constant. It is noticed that the velocity and flow rate increase while the wall shear stress and frictional resistance decrease with the increase of the peripheral layer thickness. The estimates of the increase in the frictional resistance are significantly much smaller for the present two-fluid model than those of the single-fluid model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call