Abstract

We investigate the possibility that dark matter is a mixture of two non-interacting perfect fluids, with different four-velocities and thermodynamic parameters. The two-fluid model can be described as an effective single anisotropic fluid, with distinct radial and tangential pressures. The basic equations describing the equilibrium structure of the two-fluid dark matter model, and of the tangential velocity of test particles in stable circular orbits, are obtained for the case of a spherically symmetric static geometry. By assuming a non-relativistic kinetic model for the dark matter particles, the density profile and the tangential velocity of the dark matter mixture are obtained by numerically integrating the gravitational field equations. The cosmological implications of the model are also briefly considered, and it is shown that the anisotropic two-fluid model isotropizes in the large time limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.