Abstract

Population balance equations combined with a three-dimensional two-fluid model are employed to predict subcooled boiling flow at low pressure in a vertical annular channel. The MUSIG (MUltiple-SIze-Group) model implemented in the computer code CFX4.4 is further developed to accommodate the wall nucleation at the heated wall and condensation in the subcooled boiling regime. Comparison of model predictions against local measurements is made for the void fraction, bubble Sauter mean diameter and gas and liquid velocities covering a range of different mass and heat fluxes and inlet subcooling temperatures. Additional comparison using empirical relationships for the active nucelation site density and local bubble diameter is also investigated. Good agreement is achieved with the local radial void fraction, bubble Sauter diameter and liquid velocity profiles against measurements. However, significant weakness of the model is evidenced in the prediction of the vapour velocity. Work is in progress to circumvent the deficiency through the consideration of additional momentum equations or developing an algebraic slip model to account for bubble separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call