Abstract
This article describes a set of control algorithms for in-hand object handling using a parallel jaw gripper equipped with force/tactile sensors. The control strategy is model based and relies upon the limit surface concept. The LuGre friction model is combined with the limit surface method to set up a dynamic model of soft contact. The model is exploited to estimate the relative velocity of the object with respect to the fingers, so as to control the grip force to counteract possible slipping events due to external disturbances. Force/tactile feedback, the only perception source used by the algorithms, is suitably exploited not only for safe grasping of a variety of objects with uncertain weight and inertial properties, but also for in-hand manipulation actions, like object pivoting or gripper pivoting. Since the algorithm is based on the control of the object velocity, accuracy of the desired object positioning depends on the initial grasp configuration, as well as on the accuracy of the friction model parameters. Such manipulation skills are evaluated in the execution of various pick and place tasks typical of an in-store logistic scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.