Abstract

Ferritin plays a key role in cellular iron metabolism, which includes iron storage and detoxification. From disk abalone, Haliotis discus discus, the cDNA that encodes the two ferritin subunits abalone ferritin subunit 1 (Abf1) and abalone ferritin subunit 2 (Abf2) were cloned. The complete cDNA coding sequences for Abf1 and Abf2 contained 621 and 549 bp, encoding for 207 and 183 amino acid residues, respectively. The H. discus discus Abf2 subunit contained a highly conserved motif for the ferroxidase center, which consists of seven residues of a typical vertebrate heavy-chain ferritin with a typical stem–loop structure. Abf2 mRNA contains a 27 bp iron-responsive element (IRE) in the 5′UTR position. This IRE exhibited 96% similarity with pearl and Pacific oyster and 67% similarity with human H type IREs. However, the Abf1 subunit had neither ferroxidase center residues nor the IRE motif sequence; instead, it contained iron-binding region signature 2 (IBRS) residues. Recombinant Abf1 and Abf2 proteins were purified and the respective sizes were about 24 and 21 kDa. Abf1 and Abf2 exhibited iron-chelating activity 44.2% and 22.0%, respectively, at protein concentration of 6 μg/ml. Analysis of tissue-specific expression by RT-PCR revealed that Abf1 and Abf2 ferritin mRNAs were expressed in various abalone tissues, such as gill, mantle, gonad, foot and digestive tract in a wide distribution profile, but Abf2 expression was more prominent than Abf1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.