Abstract

As an extension of the intertwining operator idea, an algebraic method which provides a link between supersymmetric quantum mechanics and quantum (super)integrability is introduced. By realization of the method in two dimensions, two infinite families of superintegrable and isospectral stationary potentials are generated. The method makes it possible to perform Darboux transformations in such a way that, in addition to the isospectral property, they acquire the superintegrability preserving property. Symmetry generators are second and fourth order in derivatives and all potentials are isospectral with one of the Smorodinsky–Winternitz potentials. Explicit expressions of the potentials, their dynamical symmetry generators, and the algebra they obey as well as their degenerate spectra and corresponding normalizable states are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.