Abstract
Complement factor H-related (FHR) proteins display structural and functional similarities to each other and to the complement regulator factor H (FH). FHRs have been identified in various species, including human, rat, and the fish barred sand bass. As mice provide a useful model system to study the physiological role of FHRs in vivo, we aimed at characterizing murine FHR proteins. Two putative FHRs of approximately 100 and 38 kDa were detected in mouse plasma using FH-specific antiserum. In a liver cDNA library, three murine FHR-encoding transcripts were identified. Two clones code for related FHR proteins termed FHR-C and FHR-C_v1, which in secreted form are composed of 14 and 13 short consensus repeat (SCR) domains, homologous to SCRs 6-17 and 19-20 of FH. The third transcript, FHR-B, is derived from a separate gene and codes for a secreted protein composed of five SCR domains. FHR-B displays homology to SCRs 5-7 and 19-20 of FH. Expression of FHR-B in various tissues was analyzed by real-time polymerase chain reaction and was identified at high levels in liver, kidney and heart. In liver, FHR-B transcript level was even higher than that of FH. In addition, FHR-B was expressed as a recombinant 37-kDa protein, and this recombinant FHR-B interacted with the ligands heparin and human C3b. Using mouse plasma, the native presumptive FHR proteins were also analyzed in binding assays. In summary, we identify two FHR proteins in mice and for the first time characterize a murine FHR as a heparin- and C3b-binding protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.