Abstract
In the last few years, technological advancement has led to the use of wearable body sensors for gathering patient information. Wireless body area networks played an essential role in the modern medical era. Through wearable body sensors, patient data are sent to medical professionals in real-time without any hindrance. This information moves through the public channel, and thus proper security and protection are needed because of its sensitiveness. Many authentication protocols proposed for solving these issues were neither secure nor cost-effective. This paper proposed an authentication protocol using certificateless cryptography for wireless body area networks to resolve the associated security concerns. A formal security analysis is done using the Burrows–Abadi–Needham logic shows that the proposed protocol is resilient against prevailing attacks. Additionally, we employ the Real-or-Random model for mathematical proof and Automated Verification Security Protocol and Analysis simulation tool for security analysis. A detailed comprehensive comparison with the existing protocols indicates that the proposed protocol is cost-effective with improved functionality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Ambient Intelligence and Humanized Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.