Abstract
The purpose of the study presented in this manuscript is to describe and make available two equation-of-state (EOS) algorithms assembled for multiphase flow and transport of carbon dioxide (CO2). The algorithms presented here calculate solubility, compressibility factor, density, viscosity, fugacity, and enthalpy of CO2 in gaseous and supercritical phases, and mixtures or solutions of CO2 in water, as functions of pressure and temperature. Several features distinguish the two algorithms, but the primary distinction concerns treatment of supercritical/gas-phase CO2: one EOS we assembled is based on Redlich and Kwong's original algorithm developed in 1949, and the other is based on an algorithm developed by Span and Wagner in 1996. Both were modified for application to sedimentary basin studies of multiphase CO2 flow processes, including carbon sequestration applications. We present a brief comparison of these two EOS algorithms. Source codes for both algorithms are provided, including “stand-alone” Matlab © scripts for the interactive calculation of fluid properties at specified P–T conditions and FORTRAN subroutines for inclusion in existing FORTRAN multiphase fluid simulation packages. These routines are intended for fundamental analyses of CO2 sequestration and the like; more advanced studies, such as brine processes and reactive transport, require more advanced EOS algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.