Abstract
AbstractIn this paper, two empirical models are developed for short‐term forecast of the Kp index, taking advantage of solar wind‐magnetosphere coupling functions proposed by the research community. Both models are based on the data for years 1995 to 2004. Model 1 mainly uses solar wind parameters as the inputs, while model 2 also utilizes the previous measured Kp value. Finally, model 1 predicts Kp with a linear correlation coefficient (r) of 0.91, a prediction efficiency (PE) of 0.81, and a root‐mean‐square (RMS) error of 0.59. Model 2 gives an r of 0.92, a PE of 0.84, and an RMS error of 0.57. The two models are validated through out‐of‐sample test for years 2005 to 2013, which also yields high forecast accuracy. Unlike in the other models reported in the literature, we are taking the response time of the magnetosphere to external solar wind at the Earth explicitly in the modeling. Statistically, the time delay in the models turns out to be about 30 min. By introducing this term, both the accuracy and lead time of the model forecast are improved. Through verification and validation, the models can be used in operational geomagnetic storm warnings with reliable performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.