Abstract
We consider the correlation of two single-particle probability densities $|\Psi_{E}({\bf r})|^{2}$ at coinciding points ${\bf r}$ as a function of the energy separation $\omega=|E-E'|$ for disordered tight-binding lattice models (the Anderson models) and certain random matrix ensembles. We focus on the models in the parameter range where they are close but not exactly at the Anderson localization transition. We show that even far away from the critical point the eigenfunction correlation show the remnant of multifractality which is characteristic of the critical states. By a combination of the numerical results on the Anderson model and analytical and numerical results for the relevant random matrix theories we were able to identify the Gaussian random matrix ensembles that describe the multifractal features in the metal and insulator phases. In particular those random matrix ensembles describe new phenomena of eigenfunction correlation we discovered from simulations on the Anderson model. These are the eigenfunction mutual avoiding at large energy separations and the logarithmic enhancement of eigenfunction correlations at small energy separations in the two-dimensional (2D) and the three-dimensional (3D) Anderson insulator. For both phenomena a simple and general physical picture is suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.