Abstract
The Centaurs are a transient population of small bodies in the outer solar system whose orbits are strongly chaotic. These objects typically suffer significant changes of orbital parameters on timescales of a few thousand years, and their orbital evolution exhibits two types of behaviors described qualitatively as random-walk and resonance-sticking. We have analyzed the chaotic behavior of the known Centaurs. Our analysis has revealed that the two types of chaotic evolution are quantitatively distinguishable: (1) the random walk-type behavior is well described by so-called generalized diffusion in which the rms deviation of the semimajor axis grows with time t as ~t^H, with Hurst exponent H in the range 0.22--0.95, however (2) orbital evolution dominated by intermittent resonance sticking, with sudden jumps from one mean motion resonance to another, has poorly defined H. We further find that these two types of behavior are correlated with Centaur dynamical lifetime: most Centaurs whose dynamical lifetime is less than ~22 Myr exhibit generalized diffusion, whereas most Centaurs of longer dynamical lifetimes exhibit intermittent resonance sticking. We also find that Centaurs in the diffusing class are likely to evolve into Jupiter-family comets during their dynamical lifetimes, while those in the resonance-hopping class do not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.