Abstract

The acquisition of CoII by the corrin component of vitamin B12 follows one of two distinct pathways, referred to as early or late CoII insertion. The late insertion pathway exploits a CoII metallochaperone (CobW) from the COG0523 family of G3E GTPases, while the early insertion pathway does not. This provides an opportunity to contrast the thermodynamics of metalation in a metallochaperone-requiring and a metallochaperone-independent pathway. In the metallochaperone-independent route, sirohydrochlorin (SHC) associates with the CbiK chelatase to form CoII-SHC. CoII-buffered enzymatic assays indicate that SHC binding enhances the thermodynamic gradient for CoII transfer from the cytosol to CbiK. In the metallochaperone-dependent pathway, hydrogenobyrinic acid a,c-diamide (HBAD) associates with the CobNST chelatase to form CoII-HBAD. Here, CoII-buffered enzymatic assays indicate that CoII transfer from the cytosol to HBAD-CobNST must somehow traverse a highly unfavorable thermodynamic gradient for CoII binding. Notably, there is a favorable gradient for CoII transfer from the cytosol to the MgIIGTP-CobW metallochaperone, but further transfer of CoII from the GTP-bound metallochaperone to the HBAD-CobNST chelatase complex is thermodynamically unfavorable. However, after nucleotide hydrolysis, CoII transfer from the chaperone to the chelatase complex is calculated to become favorable. These data reveal that the CobW metallochaperone can overcome an unfavorable thermodynamic gradient for CoII transfer from the cytosol to the chelatase by coupling this process to GTP hydrolysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.