Abstract
Spontaneous local Ca(2+) release events have been observed in airway smooth muscle cells (SMCs), but the underlying mechanisms are largely unknown. Considering that each type of SMCs may use its own mechanisms to regulate local Ca(2+) release events, we sought to investigate the signaling pathway for spontaneous local Ca(2+) release events in freshly isolated mouse airway SMCs using a laser scanning confocal microscope. Application of ryanodine to block ryanodine receptors (RyRs) abolished spontaneous local Ca(2+) release events, indicating that these events are RyR-mediated Ca(2+) sparks. Inhibition of inositol 1,4,5-triphosphate receptors (IP(3)Rs) by 2-aminoethoxydiphenyl-borate (2-APB) or xestospongin-C significantly blocked the activity of Ca(2+) sparks. Under patch clamp conditions, dialysis of IP(3) to activate IP(3)Rs increased the activity of local Ca(2+) events in control cells but had no effect in ryanodine-pretreated cells. The RyR agonist caffeine augmented the frequency of Ca(2+) sparks in cells pretreated with and without 2-APB or xestospongin-C. The specific phospholipase C (PLC) blocker U73122 decreased the activity of Ca(2+) sparks and prevented xestospongin-C from producing the inhibitory effect. The protein kinase C (PKC) activator 1-oleoyl-2-acetyl-glycerol or phorbol-12-myristate-13-acetate inhibited Ca(2+) sparks, whereas the PKC inhibitor chelerythrine, PKCvarepsilon inhibitory peptide, or PKCvarepsilon gene knockout produced an opposite effect. Collectively, our data suggest that the basal activation of PLC regulates the activity of RyR-mediated, spontaneous Ca(2+) sparks in airway SMCs through two distinct signaling pathways: a positive IP(3)-IP(3)R pathway and a negative diacylglycerol-PKCvarepsilon pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.