Abstract

ABSTRACTN-glycosylation in Archaea presents aspects of this posttranslational modification not seen in either Eukarya or Bacteria. In the haloarchaeon Haloferax volcanii, the surface (S)-layer glycoprotein can be simultaneously modified by two different N-glycans. Asn-13 and Asn-83 are modified by a pentasaccharide, whereas Asn-498 is modified by a tetrasaccharide of distinct composition, with N-glycosylation at this position being related to environmental conditions. Specifically, N-glycosylation of Asn-498 is detected when cells are grown in the presence of 1.75 but not 3.4 M NaCl. While deletion of genes encoding components of the pentasaccharide assembly pathway had no effect on the biosynthesis of the tetrasaccharide bound to Asn-498, deletion of genes within the cluster spanning HVO_2046 to HVO_2061 interfered with the assembly and attachment of the Asn-498-linked tetrasaccharide. Transfer of the “low-salt” tetrasaccharide from the dolichol phosphate carrier upon which it is assembled to S-layer glycoprotein Asn-498 did not require AglB, the oligosaccharyltransferase responsible for pentasaccharide attachment to Asn-13 and Asn-83. Finally, although biogenesis of the low-salt tetrasaccharide is barely discernible upon growth at the elevated salinity, this glycan was readily detected under such conditions in strains deleted of pentasaccharide biosynthesis pathway genes, indicative of cross talk between the two N-glycosylation pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call