Abstract

An enzyme is frequently conceived of as having a single functional mechanism. This is particularly true for motor enzymes, where the necessity for tight coupling of mechanical and chemical cycles imposes rigid constraints on the reaction pathway. In mixtures of substrate (ATP) and an inhibitor (adenosine 5′-(β,γ-imido)triphosphate or AMP-PNP), single kinesin molecules move on microtubules in two distinct types of multiple-turnover “runs” that differ in their susceptibility to inhibition. Longer (less susceptible) runs are consistent with movement driven by the alternating-sites mechanism previously proposed for uninhibited kinesin. In contrast, kinesin molecules in shorter runs step with AMP-PNP continuously bound to one of the two active sites of the enzyme. Thus, in this mixture of substrate and inhibitor, kinesin can function as a motor enzyme using either of two distinct mechanisms. In one of these, the enzyme can accomplish high-duty-ratio processive movement without alternating-sites ATP hydrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.