Abstract

In search of the regulation mechanisms for isoform specific myosin assembly, we have used the COOH-terminal fragments of nonmuscle myosin isoforms MIIA and MIIB (MIIA(F46) and MIIB(alpha)(F47)) as a model system. Phosphorylation by protein kinase C (PK C) or casein kinase II (CK II) within or near the nonhelical tail-end domain inhibits assembly of MIIB(alpha)(F47) [Murakami, N., et al. (1998) Biochemistry 37, 1989]. In the study presented here, we mutated the kinase sites to analyze the inhibition mechanisms of MIIB assembly by phosphorylation. Replacement of the CK II or PK C sites with Asp (MIIB(alpha)(F47)-CK-5D or -PK-4D) strongly inhibited the filament assembly, with or without Mg(2+), by significantly increasing the critical concentrations for assembly. Without Mg(2+), MIIB(alpha)(F47)-CK-5D or -PK-4D inhibited the assembly of wild-type (wt) MIIB(alpha)(F47) by either mixing as homofragments or forming heterofragments. With 2.5 mM Mg(2+), MIIB(alpha)(F47)-wt promoted assembly of MIIB(alpha)(F47)-CK-5D and -PK-4D in homofragment mixtures, but not by forming heterofragments. MIIA(F46) coassembled with MIIB(alpha)(F47)-wt and -CK-5D and altered their assembly patterns. In contrast, assembly of MIIB(alpha)(F47)-PK-4D was unchanged by MIIA(F46). A metastasis-associated protein, mts 1, bound in a Ca(2+)-dependent manner to MIIA(F46), but not appreciably to MIIB(alpha)(F47). At 0.15 M NaCl, mts 1-Ca(2+) not only inhibited MIIA(F46) assembly but also disassembled the MIIA(F46) filaments. Mts 1, however, did not affect the assembly of MIIB(alpha)(F47) in MIIA(F46) and MIIB(alpha)(F47) mixtures, indicating that mts 1 is an inhibitor specific to MIIA assembly. Our results suggest strongly that assembly of MIIA and MIIB is regulated by distinct mechanisms via tail-end domains: phosphorylation of MIIB and mts 1 binding to MIIA. These mechanisms may also function to form MIIA or MIIB homofilaments by selectively inhibiting MIIB or MIIA assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.