Abstract

Sheath blight of rice, caused by Rhizoctonia solani Kühn AG-1 IA [teleomorph: Thanatephorus cucumeris (Frank) Donk], is one of the major diseases of rice (Oryza sativa L.) worldwide. Sclerotia produced by R. solani AG-1 IA are crucial for their survival in adverse environments and further dissemination when environmental conditions become conducive. Differentially expressed genes during three stages of sclerotial metamorphosis of R. solani AG-1 IA were investigated by utilizing complementary DNA amplified fragment length polymorphism (cDNA-AFLP) technique. A total of 258 transcript derived fragments (TDFs) were obtained and sequenced, among which 253 TDFs were annotated with known functions through BLASTX by searching the GenBank database and 19 annotated TDFs were assigned into 19 secondary metabolic pathways through searching the Kyoto Encyclopedia of Genes and Genomes (KEGG) PATHWAY database. Moreover, the results of quantitative real-time PCR (qRT-PCR) analysis showed that the expression patterns of eight representative annotated TDFs were positively correlated with sclerotial metamorphosis. Sequence annotation of TDFs showed homology similarities to several genes encoding for proteins belonging to the glycosyltransferases B (GTB) and RNA recognition motif (RRM) superfamily and to other development-related proteins. Taken together, it is concluded that the members of the GTB and RRM superfamilies and several new genes involved in proteolytic process identified in this study might serve as the scavengers of free radicals and reactive oxygen species (ROS) and thus play an important role in the sclerotial metamorphosis process of R. solani AG-1 IA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.