Abstract

In this paper, the generation and discharge modes of 2D atmospheric pressure plasma jet arrays in economic argon feeding gas with a honeycomb configuration is first reported. Two coupling and collimated discharge modes are achieved with the same array structure. The discharge modes are shown to depend on the gas flow rate and center-to-center distances of jets in the array. Stronger plasmas with higher plasma density than single jet can be obtained in coupling mode array at close proximity of jets in the array and small gas flow rate, while plasmas with moderate plasma density and relative large area can be obtained in the collimated mode array at far proximity of jets in the array. The power density and emission spectra from the centered plasma jet for the coupling mode array are both larger than those of the collimated mode. The appearance of the two discharge modes may be due to the hydrodynamic interactions between the seven individual Ar channels emerging from individual tubes with the air surrounding them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.