Abstract

By means of first-principles computations, we explored the potential of using Y2C monolayer as anode material for rechargeable Na-ion batteries (NIBs). As a two-dimensional electride material, Y2C monolayer is metallic and has a strong in-plane stiffness. Significant interactions between Y2C monolayer and Na atom ensure its high theoretical specific capacity of 564 mA·h/g. The Y2C monolayer also has high Na mobility and rather small average open-circuit voltages. All these characteristics suggest that the Y2C monolayer could be a promising anode material for NIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.