Abstract

A theoretical foundation to the notion of 2D transform and 2D signal processing is given, focusing on 2D group-based transforms, of which the 2D Haar and 2D Fourier transforms are particular instances. Conditions for separability of these transforms are established. The theory is applied to certain groups that are wreath products of cyclic groups to give separable and inseparable 2D wreath product transforms and their filter bank implementations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.