Abstract

Rare earth chalcogenides (RECs) with novel luminescence and magnetic properties offer fascinating opportunities for fundamental research and applications. However, controllable synthesis of RECs down to the two-dimensional (2D) limit still has a great challenge. Herein, 2D wedge-shaped ferromagnetic EuS single crystals are successfully synthesized via a facile molten-salt-assisted chemical vapor deposition method on sapphire. Based on the theoretical simulations and experimental measurements, the mechanisms of aligned growth and wedge-shaped growth are systematically proposed. The wedge-shaped growth is driven by a dual-interaction mechanism, where the coupling between EuS and the substrate steps impedes the lateral growth, and the strong bonding of nonlayered EuS itself facilitates the vertical growth. Through temperature-dependent Raman and photoluminescence characterization, the nanoflakes show a large Raman temperature coefficient of -0.030 cm-1 K-1 and uncommon increasing band gap with temperature. More importantly, by low-temperature magnetic force microscopy characterization, thickness variation of the magnetic signal is revealed within one sample, indicating the great potential of the wedge-shaped nanoflake to serve as a platform for highly efficient investigation of thickness-dependent magnetic properties. This work sheds new light on 2D RECs and will offer a deep understanding of 2D wedge-shaped materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call