Abstract

MoS2 is a promising electrode material for energy storage. However, the intrinsic multilayer pure metallic MoS2 (M-MoS2) has not been investigated for use in supercapacitors. Here, an ultrafast rate supercapacitor with extraordinary capacitance using a multilayer M-MoS2-H2O system is first investigated. Intrinsic M-MoS2 with a monolayer of water molecules covering both sides of nanosheets is obtained through a hydrothermal method with water as solvent. The super electrical conductivity of the as-prepared pure M-MoS2 is beneficial to electron transport for high power supercapacitor. Meanwhile, nanochannels between the layers of M-MoS2-H2O with a distance of ∼1.18 nm are favorable for increasing the specific space for ion diffusion and enlarging the surface area for ion adsorption. By virtue of this, M-MoS2-H2O reaches a high capacitance of 380 F/g at a scan rate of 5 mV/s and still maintains 105 F/g at scan rate of 10 V/s. Furthermore, the specific capacitance of the symmetric supercapacitor based on M-MoS2-H2O electrodes retain a value as high as 249 F/g under 50 mV/s. These findings suggest that multilayered M-MoS2-H2O system with ion accessible large nanochannels and efficient charge transport provide an efficient energy storage strategy for ultrafast supercapacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call