Abstract

Photocatalytic hydrogen production via water splitting has been a promising method to produce clean energy and effectively reduce environmental pollution. Herein, a specific bandgap-oriented structure search was performed. A two-dimensional (2D) carbon structure comprising triatomic and hexatomic carbon rings, named 2D tri-hex carbon, was proposed to possess suitable bandgap and band edge positions for photocatalytic water splitting. Our results show that 2D tri-hex carbon has a high absorption coefficient under sunlight and high photocatalytic water-splitting efficiency under acidic conditions. The study provides insight into exploring a promising candidate in 2D carbon materials for acid-corrosion-resistant photocatalytic water-splitting applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call