Abstract

A comparison is presented of transient heat flow in He II as measured experimentally and as predicted by analysis based on the Gorter-Mellink equation. The geometry is that envisioned for the He II cooling of a SMES (superconducting magnetic energy storage) system, namely, an annular layer of He II in direct contact with one layer of a solenoid and extending the full height of the coil. A normal zone over a fraction of a turn provides for two-dimensional heat flow in the annular layer of the He II. The comparison is given for both adiabatic and isothermal boundary conditions at the end of the channel. Good agreement between the analysis and the experimental data is found, verifying the usefulness of the analysis for large-scale systems. In addition, discrepancies between the analysis and data provide insight into the stability process of the He II cooled superconductor. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.