Abstract

We follow the diffusive motion of colloidal particles of diameter d in soap films of varying thickness h with fluorescence microscopy. Diffusion constants are obtained both from one- and two-particle microrheological measurements of particle motion in these films. These diffusion constants are related to the surface viscosity of the interfaces comprising the soap films, by means of the Trapeznikov approximation and Saffman's equation for diffusion in a 2D fluid. Unphysical values of the surface viscosity are found for thick soap films (h/d>7+/-3), indicating a transition from 2D to 3D behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.