Abstract

Sub-aperture coherence (SAC) is a classical phase control method for high-precision beam steering using liquid crystal optical phased arrays (LCOPA). On this basis, radial sub-aperture coherence (RSAC) and symmetrical radial sub-aperture coherence (SRSAC) were proposed, which guarantee the stability of steering angles when the beam aperture and incident position fluctuate. In this article, the pre-existing one-dimensional SRSAC was firstly extended to a more universal 2D phase generation algorithm. Meanwhile, for the intractable problem of local precision defects caused by the basic two-dimensional variable period grating (2D-VPG) algorithm, we tracked their locations accurately and designed a targeted elimination method carefully. So these remarkable error peaks could be thoroughly removed by using 2D-SRSAC optimized by the local precision defect elimination method. Since then, all the excellent performance of 1D-SRSAC can be perfectly transplanted to 2D, which makes the non-mechanical beam steering technology using LCOPA more mature and competitive in the applications required ultra-high precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.