Abstract

The study of exotic superconductivity in two dimensions has been a central theme in the solid state and materials research communities. Experimentally exploring and identifying exotic, fascinating interface superconductors with a high transition temperature (Tc) are challenging. Here, we report an experimental observation of intriguing two-dimensional superconductivity with a Tc of up to 3.8 K at the interface between a Mott insulator Ti2O3 and polar semiconductor GaN. At the verge of superconductivity, we also observe a striking quantum metallic-like state, demonstrating that it is a precursor to the two-dimensional superconductivity as the temperature is decreased. Our work shows an exciting opportunity to exploit the underlying, emergent quantum phenomena at the heterointerfaces via heterostructure engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.