Abstract
AbstractGeotechnical engineering is dominated mostly by uncertainties, because it always deals with highly variable natural materials. Reliability-analysis approaches emerge as a more reasonable and rigorous way of handling uncertainties. Two-dimensional stability assessment of rock slopes is performed, and the probability of failure of rock slopes against planar sliding is determined using the random fields. Both cohesion and friction coefficient along a discontinuity are treated as a normal random field and are represented by the mean values, standard deviations, spatial correlation lengths, correlation coefficient, and cross-correlation length, which account for the cross correlation between cohesion and coefficient of friction. Several examples are used to verify the proposed approach. The numerical results obtained from the proposed method are in good agreement with the numerical results obtained from Monte Carlo simulations. Moreover, the proposed method provides a new approach to study two-dimensio...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.