Abstract
We present two-dimensional optical spectroscopy of the central region (94×122) of the Seyfert 1 ring galaxy NGC 985 obtained with an optical fiber system (two-dimensional Fiber ISIS System). The 95 spectra presented here include the Hβ-[O III] λλ4959, 5007 emission lines and the Mg I b absorption lines, which permit the study of the distribution and kinematics of the ionized gas and the stars in two dimensions. In agreement with the results of other authors, the continuum maps show the presence of two maxima: the bright Seyfert 1 nucleus and a second nucleus located about 37 to the northwest. These observations confirm that this second nucleus is an extragalactic object at the same redshift as that of NGC 985. These observations indicate an anisotropic distribution of the ionized gas around the Seyfert nucleus. Despite this, the velocity field of the ionized gas shows a rather regular pattern, its general kinematic properties being similar to those found in other unperturbed spiral Seyfert galaxies. Many of the spectra in the region between the Seyfert and the secondary nucleus have asymmetric and relatively broad [O III] emission-line profiles. The kinematic center of the stellar velocity field is located in the neighborhood of the Seyfert nucleus, suggesting that this nucleus is related to the main stellar component. Therefore, these observations support the hypothesis that NGC 985 is the result of a two-galaxy collision in which the intruder (elliptical or spheroidal) galaxy would be what is now the secondary nucleus, while the Seyfert activity is associated with the nucleus of the primary disk galaxy. In spite of the strong disruption that defines the large-scale morphology of NGC 985, the stellar and ionized gas kinematics do not appear significantly perturbed in the circumnuclear region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.